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ABSTRACT 

Non-Gaussian fluctuations for StNCtOX formation may be generated during the inflationary 
epoch from the nonlinear interaction of two scalar fields with gravity. Semi-analytical 
calculations are given describing nonlinear long wavelength evolution in 3tl dimensions. 
Long wavelength fields are governed by a single equation, the separated Hamilton-Jacobi 
equation (SHJE). I discuss complete analytic solutions of the SHJE for two scalar fields 
with a potential whose logarithm lnV(q$) is lin ear. More complicated potential surfaces 
may be approximated by continuously joining various linear In V(4j) potentials. Typically, 
non-Gaussian fluctuations arise when one passes over several sharp ridges in the potential 
surface. One can input this richer class of initial conditions into N-body codes to see the 
effects on the large scale structure in the Universe. The cleanest test of non-Gaussian 
fiuctuations will hopefully occur in the near future from large angle microwave background 
anisotropy experiments. 
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A complete solution which depends on two arbitrary parameters, b, m is, 

Wh,h;P,8;b,m) = (= ~*~)l/~~~e~r~~(-~~rins+~~cose~]ro~h(u) 
P mP 

(2.7a) 
where u is a function of b, m, #I and $2 which is defined implicitly through, 

cod - msix16)~~ - (mcos0 + sinf?)& - b] = -g x 

[u&n’(3p- 1) + 3p+lnlcosh(u) - sinh(u)&d(3p- 1) + 3~11. (2.76) 

All solutions of the SHJE with potential (2.6) may be derived from eq.(2.7). Surfaces of 
constant Hobble parameter are plotted as solid curves in Fig.(l) for the case m = 1, B = 0. 
The family of orthogonal lines are the physical trajectories. This solution of the SHJE may 
be verified by differentiation; it is actually derived by looking for symmetries in the SHJE. 

-10 10 

Fig. (1): The complete solution, H(4j; b, m;p,B), of the separated Hamilton-Jacobi equa- 
tion is shown for two scalar fields interacting through a linear l.nV potential, eq.(2.6). 
Here, the mixing angle 0 vanishes, and the constant parameters are chosen to be b = 0 
and m = 1. Surfaces of constant potential are just horizontal lines. The broken lines are 
trajectories of the fields, which are orthogonal to the surfaces of constant Hobble parameter 
(solid lines). One can ask what happened to space and time coordinates in the SHJE (2.4)? 
Loosely speaking, Q, which enters in the canonical transformation (2.8) is the most natural 
time parameterization of the trajectories. The new canonical variables, b, m, rb, A’” then 
serve as the spatial coordinates because they have no time dependence. In this sense, the 
Hamilton-Jacobi formalism yields the the choice of coordinates, both temporal and spatial, 
in which the evolution appears simplest. 
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Fig. (2): (a) Some trajectories in field space are shown for a potential with a single ridge. 
The solid curves are lines of uniform potential, whereas the very heavy line is the ridge. 
The trajectories (broken lines) begin in the lower halfplane with Gaussian initial conditions 
generated from short wavelength quantum noise. Even when they pass over the ridge, the 
nonlinear metric fluctuation C still remains Gaussian distributed, as shown in the histogram 
of Fig.(b) which displays the results of a 64s lattice simulation. 

Fig. (3): (a) Non-Gaussian fluctuations consistent with CMB limits may be generated 
when one passes over several ridges in the potential. The light solid curves are lines of 
uniform potential, whereas the heavy lines are the ridges. If the scalar field trajectories 
(broken lines) pass sufficiently near the orighr, nonlinear effects at long wavelengths are 
important. For a 64’ lattice simulation, the histogram of resulting microwave background 
fluctuations at large angular scales (AToMn/To~n = C/15) is shown in Fig.(b). For 
comparison, a Gaussian distribution (smooth curve) with the same mean and dispersion as 
the histogram is also shown. 
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1. INTRODUCTION 

Although i&lotion predicts that R = 1, it does not give a unique prediction for the primor- 
dial fluctuations for structure formation. The simplest inilation models utilizing a single 
scalar field yield a flat tluctuation spectrom for the Newtonian potential with Gaussian 
distributed Fourier amplitudes. Here, however, I discuss stochastic inflation calculations 
(see, for example, Salopek and Bond’) describing non-Gaussian primordial fluctuations. 
The models presented may shed some light on the problem of large scale structure in the 
Universe.* Hopefully, COSIICC I&IOW~W background (CMB) anisotropy experiments3 will 
provide the most definitive tests of these scenarios. 

In this report, I will not use the full stochastic machinery. I will assume that the fluc- 
tuations for structure formation leave the horizon when the value of the Hubble parameter 
is much smaller than the Planck scale. In addition, it will be assumed that the potential 
does not change rapidly at that time. I will consider only models where nonlinear effects 
become important later when all scales of cosmological interest are very much larger than 
the Hubble radius. Different comoving points are then no longer in causal contact, and the 
analysis is tractable. 

Quite remarkably, the full nonlinear dynamics of long wavelength fields is contained in B 
single equation, the separated Hamilton-Jacobi equation (SHJE) which is a radical starting 
point for numerical calculations in general relativity. It is useful for several reasons. The 
equation is truly covariant in that it makes no reference to either the time parameter nor 
to the spatial coordinates. When one performs calculations, it is not necessary to make any 
gauge choice. The Hubble parameter is calculated in field space, H E If(&) rather than 
on a spatial lattice. Loosely speaking, the determinant of the 3-metric is the natural time 
parameter because it separates from the full Hamilton-Jacobi equation. The new canonical 
variables may actually be taken to be the spatial coordinates because they are constants 
along comoving spatial points. 

For multiple scalar fields, the method of calculation is based on some analytic tricks 
rather than brute force numerics. If the logarithm of the potential for multiple scalar fields 
is linear, one can obtain a complete solution of the SHJE by utilizing hidden symmetries.’ 
More complicated potential surfaces can be modelled by continuously matching linear lnV 
potentials along straight line boundaries. In fact, one can construct viable non-Gaussian 
models consistent with current CMB limits if one employs a potential with three ridges.b 

2. LONG WAVELENGTH EQUATIONS 

Given some initial conditions, it will be shown how to solve for the long wavelength evolution 
of scalar fields qbj(t, z) with potential V(q&) interacting through gravity. It will be assumed 
that the metric has the form, 

ds’ = -N’(t,z)dts f eaP(t+)((d~l)’ f (dzl)’ + (d+‘), 

which describes an isotropic Universe with inhomogeneous scale factor ep(@). The lapse 
function N is determin ed when one decides the time hypersurface, although an explicit 
choice is not necessary. Gravitational radiation has been neglected which is typically an 
excellent approximation, although its evolution, too, is tractable ifone employs the powerful 
machinery of canonical transformations .’ In what follows, H(t,z) z (I/N is the Hubble 
parameter and d(t, z) = eaa$j/N are the momentum densities of the scalar fields. 
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All second order spatial gradients in the Lagrangian of Einstein gravity with scalar 
fields will be neglected, but it is necessary to retain fist order spatial gradients otherwise 
one returns to homogeneous minisuperspace. The energy constraint, 

p = A!.& [!$I T 7~“~’ + V(#j)lv 

and the evolution equations are valid at each comoving spatial point, and they are the 
same as those for homogeneous flat cosmologies. The new ingredient is the momentum 
constraint, which joins together the independent spatial points to make one Universe: 

ffi = -4x e-3-,+i&+ 
4 

The solution of this equation is familiar to those who study fluid mechanics. The Hubble 
parameter is assumed to be a function of the scalar fields, and the momentum densities are 
given by partial derivatives with respect to the scalar fields, 

H K H($j), & - 4p a= -. 
4* ei 

When these are substituted&o the energy constraint, one obtains the separated Hamilton- 
Jacobi equation. 

Hz = 2 -@.$’ + a;:$). 
I I P 

This remarkable equation governs the nonlinear dynamics of the long wavelength gravita- 
tional system. It is covariant in that is does not refer either to the time hypersurface nor 
to the spatial coordinates. 

In a sign&ant improvement for calculations based on Hamilton-Jacobi methods’ (here- 
after known as Sl), I gave an complete analytic solution of the SHJE for two scakfields 
(&, 4:) interacting with an exponential potential, 

V(4:,&;P) = KJ=+p$gJ. 

The coupling parameter p controls the steepness of the potential. The SHJE for two scalar 
fields interacting through arbitrary linear In V(&, &) potential, 

V(+I,~;P,@) = vOexp[- p 
d- 

16s ( - kk-le + &cos8) 

mP 
I. 

may then be solved by rotating the fields (+i, 6;:) by (I mixing angle 0: 

#a: = &cd + ~rsld, &; = -qqsld + q&cd, (3.7) 
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A complete solution which depends on two arbitrary parameters, b, m is, 

H(&,h;p,8;b,m) = (3 8*2)1/s /Ee+ p’ - blsine + hcose) ]cosh(u) 
P mP 

(2.70) 
whae u is I) function of b, m, $1 and $s which is defned implicitly through, 

diz 
K [(c0s8 - mshe)h - (mCOs8 + Sid)(bl - b] = -5 x 

[“~m’(3P - 1) + 3~ t InIcosh(u) - sinh(~),/~s(3~ _ 1) + 3p,~. (2.7b) 
AU solutions of the SHJE with potential (2.6) may be derived from eq.(2.7). Surfaces of 
constant Hobble parameter ae plotted M solid curves in Fig.(l) for the case m = I, 0 = 0. 
The family of orthogonal lines are the physical trajectories. This solution of the SHJE may 
be raified by diffaentiation; it is actually derived by looking for symmetries in the SBJE. 
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Fig. (1): The complete solution, H(+j; b, m;p,O), of the separated Hamilton-Jacobi equa- 
tion is shown for two rcala fields interacting through (L linear InV potential, eq.(2.6). 
Here, the miring angle 6 vanishes, and the constant parameters are chosen to be b = 0 
and m = 1. Surfsees of constant potentid are just horizontal lines. The broken lines are 
trajectories of the fields, which are orthogonal to the surfaces of constant Hubble parsmeter 
(solid lines). One C(UL ask what happened to space and time coordinatea in the SHJE (2.4)? 
Loosely speaking, Q, which enters in the canonical transformation (2.6) is the moat natural 
time parametaization of the trajectories. The new canonical variables, b, m, rb, rrn then 
save as the spatid coordinates because they hove no time dependence. In this sense, the 
Hamilton-Jacobi formalism yields the the choice of coon&&es, both temporal and spatial, 
in which the evolution appears simplest. 
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The complete solution (2.7) generates a transformation to new canonical variables, b, 
m, with conjugate momenta, A* and x”’ , given by differentiation of the Hubble parameter, 

p = ml,p aIf m’ aIf 

4* 2%’ 
*m - pp 

4x ;i;;;’ 

The Hamiltonian density actually vanishes strongly at each spatial point when expressed 
in terms of these new variables. Hence, they are constants in time, although they may be 
spatially dependent. Moreover, the new canonical variables are constrained through the 
new version of the momentum constraint, 

0 = r”b,i + Pm,i, (2.9) 

Once may invert (2.3) and (2.8) to determine the 4 constants of integration as a function 
of the original variables, a, $j, &: 

b E b(a,&,d;p,O), and similarly for m, rb, x”. (2.10) 

These complicated analytic expressions are explicitly given in Sl, and they will play a 
crucial role in what follows. In terms of the new canordcal variables,4 one may write an 
explicit analytic expression for the variable < which characterizes adiabatic fluctuations at 
long wavelengths,s 

C z C(b,m,rb,P;p,fl). (2.11) 

It is the quantity of primary interest for the simplest models of structure formation. For 
example, in the Cold Dark Matter Model, microwave background anisotropies at angular 
scales greater than N 3O are directly proportional to it, ATCMB/TCMB = [/EL 

5. INITIAL CONDITIONS 

In Sec. 4, models we constructed by joining several linear InV potentials together. It 
will be assumed that Gaussian fluctuations arising from short wavelength quantum noise 
are generated in region 1 where the potential parameters are m and &. Non-Gaussian 
fluctuations are produced when one passes over other regions of the potential. 

The Hobble function, H(4j), in region 1 is taken to be the attractor solution, 

H&(#j) = /Gup[ - ~(-~~sy.pcoa9 (3.1) 

corresponding to b = -co and m = 0 in (2.7) having homogeneous values. The new 
momentum constraint (2.9) is then satisfied at early times, and the evolution equations 
guarantee that it will be satisfied at late times. In region 1, the fields then evolve in time 
a according to, 

til(z,o) = -*a8inel + h(2), (3.21~) 

%9,1(lJ,a) = -Te3aB~~~(+j)Si&, X+‘(ZjCX) = mp 
eE 

-eJaIf,~t(~j)ccd~. 
IKE 

(3.2b) 
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The initial values of the scalar fields, &(z), are classical Gaussian random fields with power 
spectrum 

P$io(k) 3 ~i&l(k)l’ = (gy (g-&y-). 

The amplitudes of the homogeneous k = 0 modes are arbitrary. If the value of the Hubble 
parameter, Ho, when the longest modes in the simulation left the horizon during inflation, 
is much smaller than the Planck scale then the assumption of Gaussian initial conditions is 
justified. I will not give the full lattice results6 here; I will show only the ATCMB/TCIMB 
distribution at large angular scales. 

4. MODEL CALCULATIONS 

Two sets of calculations will be given. For illustration purposes, I will describe in de- 
tail a potential with a single ridge although it generically produces Gaussian fluctuations. 
When there are three ridges in the potential, then one can indeed generate non-Gaussian 
fluctuations. 

4.1 POTENTIAL WITH A RIDGE 

Consider a potential obtained by joining two linear In V potentials continuously along the 
line $1 = &tanx12 (see Fig.(2a)). Continuity of the potential at the boundary implies that 
the potential parameters, n and 02 in the upper half-plane (region 2), are related to those 
in the upper half (region 1) through, 

For a given spatial point in the lattice, the value of the fields at the interface follow from 
(3.2), 

ar _ 4K (hsinx11 - 42ocosxll), 
mp ~~~~~~~ - 0,) 

(4.2~~) 

h = .,s~~~~ el) ( h-se1 + 4aos~el 1, 431 = ,osi~~~ el) ( ~lo~08e1 + ,plosi;:;i, 

~-9 = $$ &,,(&I, ‘$31) e30rcose1. i4.2cj 

Using these values, one can determine the constants of integration (2.10) in region 2, and 
then calculate 5, eq.(2.12), which yields the CMB temperature anisotropy at large angular 
scales. All the equations are algebraic. 

In F&.(2=), I show the potential as well as some typical trajectories. In Fig.(2b), I show 
the distribution of ( on a 2-D slice from B 643 lattice calculation. For plotting purposes, the 
initial value of the Hobble parameter was chosen to be Ho = IO-imp, although microwave 
background anisotropy limits would require He < lo-‘mp. Here, the potential parameters 
in the lower halt-plane are h = 20, 0, = -60; in the upper half-plane, 0, = -30°. The 
ridge is inclined at an angle of ~11 = 165O to the I$~ axis. Surprisingly, one still obtains 
Gaussian statistics (Fig.(2b)) although the fields mix at the interface. For a potential with 
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Fig. (2): (a) Some trajectories in field space are shown for a potential with a single ridge. 
The solid curves are lines of uniform potential, whereas the very heavy line is the ridge. 
The trajectories (broken lines) begin in the lower halfplane with Gaussian initial conditions 
generated from short wavelength quantum noise. Even when they pass over the ridge, the 
nonlinear metric fluctuation < still remains Gaussian distributed, an shown in the histogram 
of Fig.(b) which displays the results of a 645 lattice cimulation. 

Fig. (3): (a) Non-Gaussian fluctuations con&tent with CMB limits may be generated 
when one passes over several ridges in the potential. The light solid curves are lines of 
oniform potential, whereas the heavy linen are the ridges. If the scalar field trajectories 
(broken lines) pasa sofEciently near the origin, nonlinear effects at long wavelengths are 
important. For a 643 lattice simulation, the histogram of resulting microwave background 
fluctuationa at large angular ticales (AZ’ CMB/TCMB = </15) is ahown in Fig.(b). For 
comparison, a Gaurnian distribution (smooth curve) with the same mean and dispersion aa 
the biatogram ia also shown. 
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a single ridge, this result may be proved quite generally. Apparently, each trajectory evolves 
in a self-similar way. 

4.2 POTENTIAL WITH THREE RIDGES 

One can obtain non-Gaussian fluctuations on cosmologically observable scales from a po- 
tential created by joining three linear lnV regions as shown in Fig.(S). Trajectories begin 
in the lower half-plane, region 1 (~1 = 20, & = -5O’), with initial Hubble parameter, 
Ho = lo-‘hp, chosen to satisfy CMB limits. If the trajectories pass into the upper right 
hand area, region 2 (62 = O’), they receive an upward kick from the potential, which forces 
them into region 3 (0~ = -3OO). (If this diagram were extended, one would find that trajec- 
tories actually cross in region 3.) The angles of the ridges starting with the lower right and 
proceeding counterclockwise are, ~1s = lo’, xss = 39O, and xsl = 158s. The calculations 
here are more complicated than in Sec. 4.1 because one must determine where a trajectory 
strikes region 3 after it has passed through region 2. C is not constant in passing through 
region 2. The distribution of C in region 3 is plotted in Fig.(3b). For the parameters shown, 
it was found that non-Gaussian fluctuations can occu if the fields passed sufficiently near 
the origin, which can be arranged through the arbitrary choice of the homogeneous mode 
amplitudes in eq.(3.2). A thorough search of parameter space has yet to be made. 

6. CONCLUSIONS 

Because ation probes arbitrarily small distance scales, it is quite likely that non-Gaussian 
fluctuations may arise from the interactions of various fields. However, the greatest obstacle 
is actually calculating these effects. As the first non-trivial improvement over homogeneous 
minisuperspace models, or~e should calculate nonlinear effects at long wavelengths. How- 
ever, there is currently no strong evidence for non-Gaussian fluctuations.’ The goal here 
then is to generate some simple models that can be used to test the non-Gaussian hypothesis 
with observational data. The major achievement of this report over earlier works-‘“~‘~ll is 
an efficient way of calculating obaemablc non-Gaussian models using Hamilton-Jacobi the- 
ory. (Previously, the only fully calculable non-Gaussian model consistent with microwave 
background limits was proposed by BardemIl who considered the square of a Gaussian 
random field whose power spectrum peaked at cluster scales.) 

In the future, the models presented here will be compared with large scale structure 
observations. The cleanest test of models of non-Gaussian fluctuations will hopefully come 
in the near future from the Cosmic Background Explorer satellites which should be in a 
position to test the Cold Dark Matter Model prediction.13 
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